Quantum Information and Device Theory 
We tackle problems in the physics of quantum
information device components and in the
general theory of quantum computation. Examples of our research
include: the design of superconducting and
semiconducting qubits and associated decoherence effects; ground
state and adiabatic
quantum computation; dynamical decoupling; tests of quantumness;
verification of quantum information processors; and quantumenhanced
devices.
We
particularly value collaborations with experimentalists. We are
continually looking for graduate students and postdoctoral fellows.
Research Highlights
References:
M. M. Wilde and A. Mizel, Addressing the clumsiness loophole in a
LeggettGarg test of macrorealism, arXiv:1001.1777
R. Li and F. Gaitan, High fidelity universal quantum gates through groupsymmetrized
rapid passage, Quantum Information and Computation 10, 936 (2010).
F. Gaitan and F. Nori, Density functional theory and quantum computing, Phys. Rev. B
79, 205117 (2009).
F. Gaitan, Quantum Error Correction and FaultTolerant Quantum Computing
(Taylor&Francis/CRC Press 2008).
A.D. GREENTREE, C. TAHAN, J.H. COLE, and
L.C.L. HOLLENBERG, Quantum phase
transitions of light Nature
Physics 2, 856  861 (December, 2006)
M.
FRIESEN, C. TAHAN, R. JOYNT, and M.A. ERIKSSON, Spin readout and
initialization in a semiconductor quantum dot, Phys. Rev. Lett. 92,
037901 (2004)
A. Mizel and D. Lidar, Three and fourbody interactions in
spinbased quantum computers, Phys.
Rev. Lett. 92, 077903 (2004).
C. TAHAN, M. FRIESEN, and R. JOYNT, Decoherence of electron spins in Sibased
quantum computers,
Phys. Rev. B 66,
035314 (2002)
A. Mizel, M. W. Mitchell, and M. L. Cohen, Energy Barrier to Decoherence, Phys. Rev. A. Rapid Comm. 63, 40302
(2001).
